Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583386

RESUMEN

An innovative task was undertaken to convert ubiquitous and toxic electronic waste, waste toner powder (WTP), into novel adsorbents. Alkaline modification with KOH, NaOH, and NH4OH was employed for the first time to synthesize a series of surface-modified WTP with enhanced dispersibility and adsorption capacity. XRD, XRF, FTIR, and BET analyses confirmed that the prepared KOH-WTP, NaOH-WTP, and NH4OH-WTP were oxygen-functionalized self-doped iron oxide-graphite nanocomposites. The prepared adsorbents were used to remove methylene blue and tetracycline from aqueous solutions. KOH-WTP (0.1 g/100 mL) adsorbed 80% of 10 mg/L methylene blue within 1 h, while 0.1 g/100 mL NH4OH-WTP removed 72% of 10 mg/L tetracycline in 3 h. Exploring surface chemistry by altering solution pH and temperature suggested that hydrogen bonding, electrostatic interactions, π-π electron stacking, and pore filling were plausible adsorption mechanisms. Scanning electron microscopy revealed a diminishing adsorbents porosity after adsorption proving the filling of pores by the adsorbates. KOH-WTP and NH4OH-WTP removed 77% and 61% of methylene blue and tetracycline respectively in the fourth reuse. The adsorption data of methylene blue and tetracycline fitted the Freundlich isotherm model. The maximum adsorption capacities of KOH-WTP and NH4OH-WTP for methylene blue and tetracycline were 59 mg/g and 43 mg/g respectively. The prepared adsorbents were also compared with other adsorbents to assess their performance. The transformation of waste toner powder into magnetically separable oxygen-functionalized WTP with outstanding recyclability and adsorption capacity showcases a significant advancement in sustainable wastewater treatment. This further aligns with the principles of the circular economy through the utilization of toxic e-waste in value-added applications. Additionally, magnetic separation of surface-modified WTP post-treatment can curtail filtration and centrifugation expenses and adsorbent loss during wastewater treatment.


Asunto(s)
Compuestos Férricos , Grafito , Nanocompuestos , Contaminantes Químicos del Agua , Azul de Metileno , Adsorción , Polvos , Hidróxido de Sodio , Tetraciclina , Antibacterianos , Oxígeno , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 352: 141468, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382717

RESUMEN

Considerable advancements have been made in the development of hydrophobic membranes for membrane distillation (MD). Nonetheless, the environmentally responsible disposal of these membranes poses a critical concern due to their synthetic composition. Herein, an eco-friendly dual-layered biopolymer-based membrane was fabricated for water desalination. The membrane was electrospun from two bio-polymeric layers. The top hydrophobic layer comprises polycaprolactone (PCL) and the bottom hydrophilic layer from cellulose acetate (CA). Additionally, silica nanoparticles (SiO2 NPs) were electrosprayed onto the top layer of the dual-layered PCL/CA membrane to enhance the hydrophobicity. The desalination performance of the modified PCL-SiO2/CA membrane was compared with the unmodified PCL/CA membrane using a direct contact membrane distillation (DCMD) unit. Results revealed that silica remarkably improves membrane hydrophobicity. The modified PCL-SiO2/CA membrane demonstrated a significant increase in water contact angle of 152.4° compared to 119° for the unmodified membrane. In addition, PCL-SiO2/CA membrane has a smaller average pore size of 0.23 ± 0.16 µm and an exceptional liquid entry pressure of water (LEPw), which is 3.8 times higher than that of PCL/CA membrane. Moreover, PCL-SiO2/CA membrane achieved a durable permeate flux of 15.6 kg/m2.h, while PCL/CA membrane showed unstable permeate flux decreasing approximately from 25 to 12 kg/m2.h over the DCMD test time. Furthermore, the modified PCL-SiO2/CA membrane achieved a high salt rejection value of 99.97% compared to a low value of 86.2% for the PCL/CA membrane after 24 h continuous DCMD operation. In conclusion, the proposed modified PCL-SiO2/CA dual-layer biopolymeric-based membrane has considerable potential to be used as an environmentally friendly membrane for the MD process.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Dióxido de Silicio/química , Purificación del Agua/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Destilación/métodos , Agua/química
3.
RSC Adv ; 14(3): 1977-1983, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38196912

RESUMEN

In this study, we reported sustainable and economical upcycling methods for utilizing plastics such as polyethylene terephthalate (PET) and polypropylene (PP) compiled from the garbage of a residential area as cheap precursors for the production of high-value carbon materials such as graphene (G), carbon spheres (CS), and carbon nanotubes (CNTs) using different thermal treatment techniques. Graphene, carbon spheres, and carbon nanotubes were successfully synthesized from PET, PP, and PET, respectively via catalytic pyrolysis. XRD and FTIR analyses were conducted on the three materials, confirming the formation of carbon and their graphitic structure. TEM images displayed uniform and consistent morphological structures of the fabricated materials. EDX data confirmed that the prepared carbon-based materials only contained carbon and oxygen without any significant contaminations. XPS results revealed significant peaks in the C 1s spectra associated with sp2 and sp3 hybridized carbon for the three materials. BET spectra showed that the prepared CNTs (54.872 m2 g-1) have the highest surface area followed by carbon spheres (54.807 m2 g-1). The thermal stability of graphene surpassed both carbon spheres and carbon nanotubes which is mainly attributed to the stronger inter-molecular bonds of graphene. Based on the characterization of the prepared materials, these materials are promising to be utilized in environmental remediation applications due to their high carbon content, low cost, and high surface area.

4.
Sci Rep ; 14(1): 539, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177206

RESUMEN

This paper presents a novel grease from jojoba oil and activated carbon nanoparticles (ACNPs) extracted from banana peel waste. The raw jojoba oil and ACNPs are first characterized for structural properties. Samples of jojoba grease blended with 0.5 and 1.5 wt. % ACNPs are prepared and tested for physicochemical and tribological properties as compared to plain jojoba grease. Adding ACNPs to jojoba grease improves corrosion resistance from grade 2c to 1a while increasing the dropping point from 100 to 109 °C. ACNPs enhanced the viscosity of jojoba oil by up to 33% for testing temperature range of 40-100 °C. The load-carrying capacity of jojoba grease is increased by about 60% when blended with 1.5 wt.% ACNPs. The same blending decreased both the coefficient of friction and the wear scar diameter by 38% and 24%, respectively. A customized test rig is used to test the effectiveness of the grease samples in rolling bearing lubrication in terms of vibration levels and power consumption. The novel jojoba grease proved to show exceptional reductions power consumption reaching 25%. The vibration spectra show the absence of resonant peaks at high frequencies suggesting the capability of jojoba grease to form a stable full film lubrication.

5.
J Fluoresc ; 34(1): 411-424, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37278963

RESUMEN

Cationic perylenediimide derivative, namely N,N'-di(2-(trimethylammoniumiodide)ethylene) perylenediimide (TAIPDI), has been synthesized and characterized in an aqueous medium by using dynamic light scattering (DLS), X-ray diffraction (XRD), fourier-transform infrared (FTIR), scanning electron microscope (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The optical absorption and fluorescence spectra of TAIPDI revealed the formation of aggregated TAIPDI nanowires in water, but not in organic solvents. In order to control the aggregation behavior, the optical properties of TAIPDI have been examined in different aqueous media, namely cetyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS). Furthermore, the utilization of the examined TAIPDI for constructing supramolecular donor-acceptor dyad has been achieved by combining the electron accepting TAIPDI with the electron donating 4,4'-bis (2-sulfostyryl)-biphenyl disodium salt (BSSBP). The formed supramolecular dyad TAIPDI-BSSBP through the ionic and electrostatic π-π interactions have been well examined by various spectroscopic techniques, e.g., steady-state absorption and fluorescence, cyclic voltammetry, and time-correlated single-photon counting (TCSPC), and first principle computational chemistry methods. Experimental results suggested the occurring of intra-supramolecular electron transfer from BSSBP to TAIPDI with rate constant and efficiency of 4.76 × 109 s-1 and 0.95, respectively. The ease of construction, absorption in the UV-Visible region, and fast electron transfer process render the supramolecular TAIPDI-BSSBP complex as a donor-acceptor material for optoelectronic devices.

6.
RSC Adv ; 13(33): 23050-23060, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37529362

RESUMEN

We report herein the surface decoration of a water-soluble free-base porphyrin, namely, 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin-tetra(p-toluenesulfonate) (H2TMPyP), over three different zirconium-based metal-organic frameworks of different linker structure and functionality; namely UiO66, UiO66-NH2, and MIP-202, via self-assembly. The synthesized MOFs along with the resulting complexes have been characterized via spectroscopic and analytical techniques (XRD, FT-IR, TEM, N2 adsorption/desorption, and laser scanning confocal microscopy). The self-assembly of H2TMPyP with the examined three MOFs was observed by using the steady-state absorption and fluorescence, as well as the fluorescence lifetime studies. It was evident that the highest complex interaction was recorded between porphyrin and UiO-66-NH2 compared with the lowest interactions between porphyrin and MIP-202. This is in good agreement with the high surface area and pore volume of UiO-66 (1100 m2 g-1 and 0.68 cm3 g-1) and compared to that of MIP-202 (94 m2 g-1 and 0.26 cm3 g-1). The photocatalytic activities of the three porphyrin entities immobilized zirconium-based MOFs were compared toward methyl orange dye degradation from aqueous solution under visible light irradiation (λex = 430 nm). The photocatalytic studies render the fabrication of the self-assembled H2TMPyP@UiO-66-NH2 composite as a promising material for dye degradation from polluted wastewater.

7.
Environ Sci Pollut Res Int ; 30(37): 87449-87464, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37420158

RESUMEN

Pure zero-valent iron (ZVI) was supported on silica and starch to enhance the activation of persulfate (PS) for tetracycline degradation. The synthesized catalysts were characterized by microscopic and spectroscopic methods to assess their physical and chemical properties. High tetracycline removal (67.55%) occurred using silica modified ZVI (ZVI-Si)/PS system due to the improved hydrophilicity and colloidal stability of ZVI-Si. Incorporating light into the ZVI-Si/PS system improved the degradation performance by 9.45%. Efficient degradation efficiencies were recorded at pH 3-7. The optimum operating parameters determined by the response surface methodology were PS concentration of 0.22 mM, initial tetracycline concentration of 10 mg/L, and ZVI-Si dose of 0.46 g/L, respectively. The rate of tetracycline degradation declined with increasing tetracycline concentration. The degradation efficiencies of tetracycline were 77%, 76.4%, 75.7%, 74.5%, and 73.75% in five repetitive runs at pH 7, 20 mg/L tetracycline concentration, 0.5 g/L ZVI-Si dose, and 0.1 mM PS concentration. The degradation mechanism was explained, and sulfate radicals were the principal reactive oxygen species. The degradation pathway was proposed based on liquid chromatography-mass spectroscopy. Tetracycline degradation was favorable in distilled and tap water. The ubiquitous presence of inorganic ions and dissolved organic matter in the lake, drain, and seawater matrices interfered with the tetracycline degradation. The high reactivity, degradation performance, stability, and reusability of ZVI-Si substantiate the potential practical application of this material for the degradation of real industrial effluents.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Agua , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Antibacterianos , Tetraciclina
8.
Environ Res ; 223: 115460, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36775090

RESUMEN

The sustainable management of toner waste (T-raw) was performed via carbonization at 500 °C (T-500) and 600 °C (T-600) to produce iron oxide-nanographene nanohybrid (FeO-NG) for activating persulfate (PS) to efficiently degrade dyes (methylene blue, MB), antibiotics (sulfamethazine, SMZ), and pesticides (diazinon, DZN). Morphology, crystallinity, chemical structure, chemical composition, surface area, and pore size distribution of the synthesized materials were investigated using various analyses. High degradation ratios of MB were attained over a wide pH range (2-7), and the optimum operating conditions were determined. The FeO-NG/PS system was tested in different water matrices. MB degradation efficiency dropped from 80.13% to 78.56% after five succeeding experiments, proving the high stability of T-500. Trapping experiments proved the major role of sulfate radicals and the minor contribution of singlet oxygen. The toxicity evaluation of the treated and untreated MB solutions was conducted via measuring the cell viability, showing an increase in cell viability ratio after the degradation of MB. The degradation efficiencies of DZN and SMZ were 97.54% and 83.7%, respectively and the mineralization ratios were 74.08% and 60.37% at initial concentrations of sulfamethazine and diazinon of 50 and 100 mg/L, respectively. The high degradation efficiency of emerging micropollutants as well as the inexpensiveness, and facile synthesis of the catalyst boost the prospect of applying the proposed system on an industrial scale.


Asunto(s)
Sulfametazina , Contaminantes Químicos del Agua , Polvos , Diazinón , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
9.
Environ Res ; 220: 115272, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634893

RESUMEN

The conversion of agricultural waste into high-value carbon products has been an attractive area in waste management strategy. This study highlighted the synthesis and effectiveness of green pea peels (GPP), green pea biochar (GPBC), and nano-ferromagnetic green pea biochar (NFGPBC) by the ferrous/ferric co-precipitation synthesis method for eliminating cationic dyes molecules from solutions. The morphological, physicochemical, and structural properties of GPP, GPBC, and NFGPBC were approved by Scanning Electron Microscopy (SEM), Transmission Emission Microscopy (TEM), Energy Dispersive X-ray (EDX), Bruneau Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction (XRD) techniques. Vibrating Sample Magnetometry (VSM) analysis confirmed the NFGPBC magnetization performance. The capacity of each adsorbent for methylene blue removal was evaluated at various parameters of material dosage (50-250 mg/150 mL), pH (2-12), initial concentration (50-250 mg/L), contact time (0-90 min) and temperature (20-60 °C). The three developed adsorbent materials GPP, GPBC, and NFGPBC, possessed reasonable BET surface areas of 0.6836, 372.54, and 147.88 m2g-1, and the corresponding monolayer adsorption capacities of 163.93, 217.40, and 175.44 mg/g, respectively. The superior performances of GPBC and NFGPBC were due to their increased surface area compared with the parent green pea peels (GPP). The results from adsorption kinetics studies of all prepared materials were pseudo-second-order and Elovich kinetics models. The thermodynamic parameters exhibited MB sorption's favorability, spontaneity, and endothermic nature. The NFGPBC material experienced Vander Waal forces, electrostatic interaction, hydrogen bonding, and hydrophobic interactions as predominant modes of the solid-liquid interaction. The regeneration, recycling, and reusability of the synthesized GPP, GPBC, and NFGPBC performed at five adsorption cycles revealed that NFGPBC demonstrated excellent cyclical performances attaining a minimum 8.9% loss in capacity due to paramagnetic properties. Thus, NFGPBC is a green, efficient, and eco-friendly material recommended for large-scale production and application in wastewater.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Pisum sativum , Descontaminación , Carbón Orgánico/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
10.
Sci Rep ; 12(1): 22443, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36575278

RESUMEN

Pure nano zero-valent iron (NZVI) was fabricated under optimum conditions based on material production yield and its efficiency toward acid blue dye-25 decolorization. The optimum prepared bare NZVI was immobilized with two different supports of silica and starch to fabricate their composites nanomaterials. The three different prepared zero-valent iron-based nanomaterials were evaluated for removal of hexavalent chromium (Cr(VI)). The silica-modified NZVI recorded the most outstanding removal efficiency for Cr(VI) compared to pristine NZVI and starch-modified NZVI. The removal efficiency of Cr(VI) was improved under acidic conditions and decreased with raising the initial concentration of Cr(VI). The co-existence of cations, anions, and humic acid reduced Cr(VI) removal efficiency. The removal efficiency was ameliorated from 96.8% to 100% after adding 0.75 mM of H2O2. The reusability of silica-modified NZVI for six cycles of Cr(VI) removal was investigated and the removal mechanism was suggested as the physicochemical process. Based on Langmuir isotherm, the maximal Cr(VI) removal capacity attained 149.25 mg/g. Kinetic and equilibrium data were efficiently fitted using the pseudo-second-order and Langmuir models, respectively confirming the proposed mechanism. Diffusion models affirmed that the adsorption rate was governed by intraparticle diffusion. Adsorption thermodynamic study suggested the spontaneity and exothermic nature of the adsorption process. This study sheds light on the technology that has potential for magnetic separation and long-term use for effective removal of emerging water pollutants.

11.
Materials (Basel) ; 15(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499942

RESUMEN

Chitosan microcapsules draw attention due to their biodegradability, biocompatibility, antibacterial behavior, low cost, easy processing, and the capability to be used for different applications. This study utilized the electrospraying technique for the chitosan microcapsules formulation. As a novel cross-linking agent, a mixture of oxalic acid and sodium phosphate dibasic was utilized as a collecting solution for the first time in the electrospraying of chitosan microcapsules. Scanning Electron Microscopy (SEM) was utilized to optimize the spherical morphology and size of the experimentally obtained microcapsules. The different parameters, including chitosan concentration, applied voltage, flow rate, and tip-to-collector (TTC) distance, affecting the microcapsules' size, sphericity, yield, and combined effects were optimized using Surface Responses Methodology (RSM). The Analysis of Variance (ANOVA) was utilized to obtain the impact of each parameter on the process responses. Accordingly, the results illustrated the significant impact of the voltage parameter, with the highest F-values and least p-values, on the capsule size, sphericity, and yield. The predicted optimum conditions were determined as 5 wt% chitosan concentration, 7 mL/h flow rate, 22 kV, and 8 cm TTC distance. The predicted responses at the optimized conditions are 389 µm, 0.72, and 80.6% for the capsule size, sphericity, and yield, respectively. While the validation of the model prediction was conducted experimentally, the obtained results were 369.2 ± 23.5 µm, 0.75 ± 0.04, and 87.3 ± 11.4%, respectively. The optimization process was successfully examined for the chitosan microcapsules manufacturing.

12.
Polymers (Basel) ; 14(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365526

RESUMEN

Air pollution and control of gaseous air pollutants are global concerns. Exposure to these gaseous contaminants causes several health risks, especially exposure to irritant gases such as ammonia (NH3). Furthermore, the application of smart polymeric nanocomposites in environmental applications has gained significant interest in recent years. In this study, aniline was polymerized without and with clay using a carbon dioxide (CO2)-assisted polymerization technique, yielding PANI and PANC samples, respectively. The samples were characterized using different methods, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and Brunner Emmett Teller (BET). The synthesized nanomaterials were utilized as gas adsorbents using a fixed bed reactor to investigate their adsorption behavior towards NH3. Three inlet NH3 concentrations were tested (35-150 ppm). The results revealed that the adsorption capacities of PANC nanocomposites were higher than nanostructured PANI for the studied concentrations. The adsorption capacities were 61.34 mgNH3/gm for PANC and 73.63 mgNH3/gm for PANI at the same inlet concentration (35 ppm). The highest NH3 adsorption capacity recorded was 582.4 mg NH3/gm, for PANC. This study showed the impressive adsorption behavior of the prepared PANI and PANC nanomaterials towards NH3 gas. Consequently, nanostructured PANI and PANC can be promising adsorbents that can be utilized to control different gaseous air pollutants.

13.
RSC Adv ; 12(29): 18363-18372, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35799940

RESUMEN

In this study, a cost-effective powdered Zn l-aspartic acid bio-metal organic framework (Zn l-Asp bio-MOF) was reported as an efficient adsorbent for Direct Red 81 (DR-81) as an anionic organic dye. The prepared bio-MOF was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission transmission electron microscopy (FETEM), surface area analysis (BET), and thermal gravimetrical analysis (TGA). The resulting bio-MOF has a large surface area (180.43 m2 g-1) and large mesopore volume (0.144 cm3 g-1), as well as good chemical inertness and mechanical stability. The optimum dosage from the Zn l-Asp bio-MOF was 1.0 g L-1 at pH = 7 for 95.3% adsorption of 10 ppm DR-81 after 45 min. Thermodynamic analysis results demonstrated that the decontamination processes were done with spontaneous, thermodynamically, and exothermic nature onto the fabricated bio-MOF. Kinetic parameters were well-fitted with pseudo-second-order kinetics, and the adsorption process was described by the Freundlich isotherm. The adsorption data proved that Zn l-Asp bio-MOF is an effective adsorbent for DR-81 from aqueous solutions with high stability and recycling ability for eight cycles, as well as the easy regeneration of the sorbent.

14.
Sci Rep ; 12(1): 8774, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610244

RESUMEN

This work deals with the synthesis of zinc oxide nanoparticles/activated carbon (ZnO NPs/AC) nanocomposites with different weight ratios (3:1, 1:1, and 1:3), where the antimicrobial, antiviral, and cytotoxicity impact of the formulated nanocomposites were evaluated versus the crude ZnO and AC samples. The formula (3:1; designated Z3C1) exhibited the utmost bactericidal effect against Gram positive group, unicellular and filamentous fungi. Regarding Gram negative group, the sample (Z3C1) was remarkably effective against Klebsiella pneumonia, unlike the case of Escherichia coli. Moreover, the whole samples showed negligible cytotoxicity against the human WI38 cell line, where the most brutality (4%) was exerted by 1000 µg/mL of the formula (Z1C3). Whilst, the formula (Z3C1) exerted the apical inhibition impact against Herpes simplex (HSV1) virus. Consequently, the synthesized (Z3C1) nanocomposite was sorted out to be fully characterized via different physicochemical techniques including FTIR, XRD, SEM, TEM, Zeta potential, TGA, and BET. XRD indicated a predominance of the crystalline pattern of ZnO NPs over the amorphous AC, while the FTIR chart confirmed an immense combination between the ZnO NPs and AC. SEM, TEM, and size distribution images illustrated that the fabricated ZnO NPs/AC was in the nanoscale size swung from 30 to 70 nm. The distinctive surface area of composite material, recording 66.27 m2/g, clearly disclosed its bioactivity toward different bacterial, fungal, and virus species.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Antibacterianos/farmacología , Antivirales/farmacología , Carbón Orgánico , Escherichia coli , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Óxido de Zinc/química , Óxido de Zinc/farmacología
15.
J Environ Manage ; 314: 115108, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35468438

RESUMEN

The performance of three solid iron wastes (SIW-1, SIW-2 and SIW-3) was evaluated as an activator of persulfate (PS) for the degradation of methylene blue (MB). SIW-3 showed the highest performance among the three catalysts. The morphology, chemical composition and chemical structure of the three SIW were investigated using various analyses. Complete degradation of methylene blue (MB) in neutral pH was achieved after 60 min at PS concentration of 4 mM, initial MB concentration of 10 mg/L and catalyst dose of 1.0 g/100 mL using light. The degradation efficiency of MB decreased from 100% to 34.6% by increasing the initial MB concentration from 10 mg/L to 100 mg/L. The degradation of MB followed the second-order model. Scavenging experiments showed the major role of hydroxyl and sulfate radicals in the MB degradation. The performance of iron waste in the retained form was investigated and the degradation efficiencies were 96%, 91.2%, 91%, 89% and 86% in five succeeding cycles at pH 7, catalyst dose of 1 g/100 mL, initial MB concentration of 10 mg/L and PS concentration of 4 mM. Moreover, the reusability of suspended iron waste was investigated. The degradation efficiencies of methylene blue, methyl red, Congo red and acid blue-25 were 100%, 97%, 96% and 97.3%, respectively after 60 min. The degradation pathways of MB were proposed after the identification of intermediates using liquid chromatography-mass spectroscopy analysis. This study revealed that the iron waste can be efficiently employed for PS activation in the suspended and immobilized modes which reduces the total cost of the Fenton process paving the way for the large-scale application of this technique.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Catálisis , Hierro/química , Azul de Metileno/química , Acero , Contaminantes Químicos del Agua/química
16.
ACS Omega ; 7(10): 8403-8419, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309432

RESUMEN

The design of a highly active Fe-supported catalyst with the optimum particle and pore size, dispersion, loading, and stability is essential for obtaining the desired product selectivity. This study employed a solvothermal method to prepare two Fe-MIL-88B metal-organic framework (MOF)-derived catalysts using triethylamine (TEA) or NaOH as deprotonation catalysts. The catalysts were analyzed using X-ray diffraction, N2-physisorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, H2 temperature-programed reduction, and thermogravimetric analysis and were evaluated for the Fischer-Tropsch synthesis performance. It was evident that the catalyst preparation in the presence of TEA produces a higher MOF yield and smaller crystal size than those produced using NaOH. The pyrolysis of MOFs yielded catalysts with different Fe particle sizes of 6 and 35 nm for the preparation in the presence of TEA and NaOH, respectively. Also, both types of catalysts exhibited a high Fe loading (50%) and good stability after 100 h reaction time. The smaller particle size TEA catalyst showed higher activity and higher olefin yield, with 94% CO conversion and a higher olefin yield of 24% at a lower reaction temperature of 280 °C and 20 bar at H2/CO = 1. Moreover, the smaller particle size TEA catalyst exhibited higher Fe time yield and CH4 selectivity but with lower chain growth probability (α) and C5+ selectivity.

17.
Polymers (Basel) ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35215622

RESUMEN

Owing to bio-polymer's low-cost, environmental friendliness and mechanically stable nature, calcium alginate microcapsules have attracted much interest for their applications in numerous fields. Among the common production methods, the Electrospraying technique has shown a great potential due to smaller shape capsule production and ease of control of independent affecting parameters. Although one factor at a time (OFAT) can predict the trends of parameter effect on size and sphericity, it is inefficient in explaining the complex parameter interaction of the electrospray process. In the current study, the effects of the main parameters affecting on size and sphericity of the microcapsules using OFAT were optimized to attain calcium alginate microcapsules with an average diameter below 100 µm. Furthermore, we propose a statistical model employing the Surface Responses Methodology (RSM) and Central Composite Design (CDD) to generate a quadratic order linear regression model for the microcapsule diameter and sphericity coefficient. Experimentally, microcapsules with a size of 92.586 µm and sphericity coefficient of 0.771 were predicted and obtained from an alginate concentration of 2.013 w/v, with a flowrate of 0.560 mL/h, a needle size of 27 G and a 2.024 w/v calcium chloride concentration as optimum parameters. The optimization processes were successfully aligned towards formation of the spherical microcapsules with smaller average diameter of less than 100 µm, owing to the applied high voltage that reached up to 21 kV.

18.
Biology (Basel) ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35053074

RESUMEN

Methyl orange (MO) is categorized among the recalcitrant and refractory xenobiotics, representing a significant burden in the ecosystem. To clean-up the surrounding environment, advances in microbial degradation have been made. The main objective of this study was to investigate the extent to which an autochthonous consortium immobilized in alginate beads can promote an efficient biodegradation of MO. By employing response surface methodology (RSM), a parametric model explained the interaction of immobilized consortium (Raoultella planticola, Ochrobactrum thiophenivorans, Bacillus flexus and Staphylococcus xylosus) to assimilate 200 mg/L of MO in the presence of 40 g/L of NaCl within 120 h. Physicochemical analysis, including UV-Vis spectroscopy and FTIR, and monitoring of the degrading enzymes (azoreductase, DCIP reductase, NADH reductase, laccase, LiP, MnP, nitrate reductase and tyrosinase) were used to evaluate MO degradation. In addition, the toxicity of MO-degradation products was investigated by means of phytotoxicity and cytotoxicity. Chlorella vulgaris retained its photosynthetic performance (>78%), as shown by the contents of chlorophyll-a, chlorophyll-b and carotenoids. The viability of normal lung and kidney cell lines was recorded to be 90.63% and 99.23%, respectively, upon exposure to MO-metabolic outcomes. These results reflect the non-toxicity of treated samples, implying their utilization in ferti-irrigation applications and industrial cooling systems. Moreover, the immobilized consortium was employed in the bioremediation of MO from artificially contaminated agricultural and industrial effluents, in augmented and non-augmented systems. Bacterial consortium remediated MO by 155 and 128.5 mg/L in augmented systems of agricultural and industrial effluents, respectively, within 144 h, revealing its mutual synergistic interaction with both indigenous microbiotas despite differences in their chemical, physical and microbial contents. These promising results encourage the application of immobilized consortium in bioaugmentation studies using different resources.

19.
Eur J Pediatr ; 181(2): 619-628, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34490507

RESUMEN

Neonates admitted to neonatal intensive care units are at a risk of developing healthcare-associated infections, leading to increased risk of mortality. This study aimed to identify organisms causing such late-onset infections in neonates and determine whether these isolates were genetically identical to those from the surrounding environmental surfaces and hands of healthcare workers (HCWs). A cross-sectional study was carried out over a period of 4 months in a university neonatal intensive care unit (NICU). Samples were collected from all neonates with symptoms of late-onset infections (n = 180). Fingerprint samples of 21 healthcare workers as well as 330 random environmental samples were also taken from the unit. Isolates from neonates, environment and fingerprints were subjected to protein electrophoresis followed by sequencing to detect genetic similarities. Almost half of neonatal samples were culture positive (91/180, 50.6%), out of which 72% of bacterial isolates (49/68) were multi-drug resistant. Klebsiella pneumoniae (32.6%) and Candida spp. (28.4%) were the commonest neonatal isolates. A cluster of two homologous Klebsiella pneumoniae strains was isolated from a neonate and an examining bed, while another homologous cluster was from a neonatal sample and a portal incubator. A third cluster was isolated from hands and three neonatal samples. This cluster (caused by Klebsiella pneumoniae strain NH54 chromosome) was found to perpetuate over the 4 months of the study. All three clusters were multi-drug-resistant Klebsiella pneumoniae. A homologous pair of each of Candida tropicalis and Candida glabrata was isolated from the blood of two neonates, and one neonatal and a crash cart sample, respectively. Overall, 8.8% (8/91) of neonatal samples were found to be homologous to other neonatal/environmental/hand isolates, denoting perpetuation of pathogens between neonates themselves and also other reservoirs of infections.Conclusion: The hands of HCWs, crash carts and incubators are reservoirs of pathogens and can lead to nosocomial infections. Clusters of multi-drug-resistant Klebsiella pneumoniae and Candida spp. were the predominant neonatal pathogens in this NICU. What is Known: • The role of hands and the environment in transmission of infections to neonates is a subject of debate. • Genetic sequencing provides solid evidence for detecting homologous strains. What is New: • K. pneumoniae was the most frequently isolated pathogen, and concomitant isolation was found in two cases from the neonatal surroundings (bed/incubator) and hands. • Candida spp. with homology were also found in different neonates and environmental samples suggesting risk of transmission.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Preparaciones Farmacéuticas , Infección Hospitalaria/epidemiología , Estudios Transversales , Personal de Salud , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana
20.
Microb Cell Fact ; 20(1): 234, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34965861

RESUMEN

The progress in industrialization everyday life has led to the continuous entry of several anthropogenic compounds, including dyes, into surrounding ecosystem causing arduous concerns for human health and biosphere. Therefore, microbial degradation of dyes is considered an eco-efficient and cost-competitive alternative to physicochemical approaches. These degradative biosystems mainly depend on the utilization of nutritive co-substrates such as yeast extract peptone in conjunction with glucose. Herein, a synergestic interaction between strains of mixed-culture consortium consisting of Rhodotorula sp., Raoultella planticola; and Staphylococcus xylosus was recruited in methylene blue (MB) degradation using agro-industrial waste as an economic and nutritive co-substrate. Via statistical means such as Plackett-Burman design and central composite design, the impact of significant nutritional parameters on MB degradation was screened and optimized. Predictive modeling denoted that complete degradation of MB was achieved within 72 h at MB (200 mg/L), NaNO3 (0.525 gm/L), molasses (385 µL/L), pH (7.5) and inoculum size (18%). Assessment of degradative enzymes revealed that intracellular NADH-reductase and DCIP-reductase were key enzymes controlling degradation process by 104.52 ± 1.75 and 274.04 ± 3.37 IU/min/mg protein after 72 h of incubation. In addition, azoreductase, tyrosinase, laccase, nitrate reductase, MnP and LiP also contributed significantly to MB degradation process. Physicochemical monitoring analysis, namely UV-Visible spectrophotometry and FTIR of MB before treatment and degradation byproducts indicated deterioration of azo bond and demethylation. Moreover, the non-toxic nature of degradation byproducts was confirmed by phytotoxicity and cytotoxicity assays. Chlorella vulgaris retained its photosynthetic capability (˃ 85%) as estimated from Chlorophyll-a/b contents compared to ˃ 30% of MB-solution. However, the viability of Wi-38 and Vero cells was estimated to be 90.67% and 99.67%, respectively, upon exposure to MB-metabolites. Furthermore, an eminent employment of consortium either freely-suspended or immobilized in plain distilled water and optimized slurry in a bioaugmentation process was implemented to treat MB in artificially-contaminated municipal wastewater and industrial effluent. The results showed a corporative interaction between the consortium examined and co-existing microbiota; reflecting its compatibility and adaptability with different microbial niches in different effluents with various physicochemical contents.


Asunto(s)
Colorantes/metabolismo , Enterobacteriaceae/metabolismo , Azul de Metileno/metabolismo , Modelos Estadísticos , Rhodotorula/metabolismo , Staphylococcus/metabolismo , Animales , Biodegradación Ambiental , Línea Celular , Chlorella vulgaris/metabolismo , Chlorocebus aethiops , Técnicas de Cocultivo , Ecosistema , Humanos , Residuos Industriales , Azul de Metileno/toxicidad , Células Vero , Aguas Residuales/microbiología , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA